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14. QUARK MODEL

Revised December 2005 by C. Amsler (University of Zürich), T. DeGrand (University of Colorado,
Boulder) and B. Krusche (University of Basel).

14.1. Quantum numbers of the quarks

Quarks are strongly interacting fermions with spin 1/2 and, by convention, positive parity. Then
antiquarks have negative parity. Quarks have the additive baryon number 1/3, antiquarks -1/3.
Table 14.1 gives the other additive quantum numbers (flavors) for the three generations of quarks.
They are related to the charge Q (in units of the elementary charge e) through the generalized
Gell-Mann-Nishijima formula

Q = Iz +
B + S + C + B + T

2
, (14.1)

where B is the baryon number. The convention is that the flavor of a quark (Iz , S, C, B, or T) has
the same sign as its charge Q. With this convention, any flavor carried by a charged meson has the
same sign as its charge, e.g. the strangeness of the K+ is +1, the bottomness of the B+ is +1,
and the charm and strangeness of the D−

s are each −1. Antiquarks have the opposite flavor signs.

Table 14.1: Additive quantum numbers of the quarks.

Property

∖

Quark d u s c b t

Q – electric charge − 1

3
+ 2

3
− 1

3
+ 2

3
− 1

3
+ 2

3

I – isospin 1

2

1

2
0 0 0 0

Iz – isospin z-component − 1

2
+ 1

2
0 0 0 0

S – strangeness 0 0 −1 0 0 0

C – charm 0 0 0 +1 0 0

B – bottomness 0 0 0 0 −1 0

T – topness 0 0 0 0 0 +1

14.2. Mesons

Mesons have baryon number B = 0. In the quark model they are qq ′ bound states of quarks q
and antiquarks q ′ (the flavors of q and q′ may be different). If the orbital angular momentum of
the qq ′ state is `, then the parity P is (−1)`+1. The meson spin J is given by the usual relation
|`− s| < J < |`+ s| where s is 0 (antiparallel quark spins) or 1 (parallel quark spins). The charge
conjugation, or C-parity C = (−1)`+s, is defined only for the qq̄ states made of quarks and their
own antiquarks. The C-parity can be generalized to the G-parity G = (−1)I+`+s for mesons
made of quarks and their own antiquarks (isospin Iz = 0) and for the charged ud̄ and dū states
(isospin I = 1).
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2 14. Quark model

The mesons are classified in JPC multiplets. The ` = 0 states are the pseudoscalars (0−+)
and the vectors (1−−). The orbital excitations ` = 1 are the scalars (0++), the axial vectors
(1++) and (1+−), and the tensors (2++). Assignments for many of the known mesons are given
in Tables 14.2 and 14.3. Radial excitations are denoted by the principal quantum number n. The
very short lifetime of the t quark makes it likely that bound state hadrons containing t quarks
and/or antiquarks do not exist.

States in the natural spin-parity series P = (−1)J must, according to the above, have s = 1
and hence CP = +1. Thus mesons with natural spin-parity and CP = −1 (0+−, 1−+, 2+−, 3−+,
etc) are forbidden in the qq̄ ′ model. The JPC = 0−− state is forbidden as well. Mesons with such
exotic quantum numbers may exist, but would lie outside the qq̄ ′ model (see section below on
exotic mesons).

Following SU(3) the nine possible qq̄ ′ combinations containing the light u, d, and s quarks are
grouped into an octet and a singlet of light quark mesons:

3 ⊗ 3 = 8 ⊕ 1 . (14.2)

A fourth quark such as charm c can be included by extending SU(3) to SU(4). However, SU(4)
is badly broken owing to the much heavier c quark. Nevertheless, in an SU(4) classification the
sixteen mesons are grouped into a 15-plet and a singlet:

4 ⊗ 4 = 15 ⊕ 1 . (14.3)

The weight diagrams for the ground-state pseudoscalar (0−+) and vector (1−−) mesons are
depicted in Fig. 14.1. The light quark mesons are members of nonets building the middle plane in
Fig. 14.1(a) and (b).

Isoscalar states with the same JPC will mix but mixing between the two light quark isoscalar
mesons and the much heavier charmonium or bottomonium states are generally assumed to be
negligible. In the following we shall use the generic names a for the I = 1, K for the I = 1/2, f
and f ′ for the I = 0 members of the light quark nonets. Thus the physical isoscalars are mixtures
of the SU(3) wave function ψ8 and ψ1:

f ′ = ψ8 cos θ − ψ1 sin θ , (14.4)

f = ψ8 sin θ + ψ1 cos θ , (14.5)

where θ is the nonet mixing angle and

ψ8 =
1√
6
(uū+ dd̄− 2ss̄) , (14.6)

ψ1 =
1√
3
(uū+ dd̄+ ss̄) . (14.7)

The mixing angle has to be determined experimentally.

These mixing relations are often rewritten to exhibit the uū + dd̄ and ss̄ components which
decouple for the “ideal” mixing angle θi such that tan θi = 1/

√
2 (or θi=35.3◦). Defining α = θ

+ 54.7◦, one obtains the physical isoscalar in the flavor basis

f ′ =
1√
2
(uū+ dd̄) cosα− ss̄ sinα , (14.8)
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Figure 14.1: SU(4) weight diagram showing the 16-plets for the pseudoscalar (a) and
vector mesons (b) made of the u, d, s and c quarks as a function of isospin I, charm C and

hypercharge Y = S+B − C
3

. The nonets of light mesons occupy the central planes to which

the cc̄ states have been added.

and its orthogonal partner f (replace α by α – 90◦). Thus for ideal mixing (αi = 90◦) the f ′

becomes pure ss̄ and the f pure uū + dd̄. The mixing angle θ can be derived from the mass
relation

tan θ =
4mK −ma − 3mf ′

2
√

2(ma −mK)
, (14.9)

which also determines its sign or, alternatively, from

tan2 θ =
4mK −ma − 3mf ′

−4mK +ma + 3mf
. (14.10)

Eliminating θ from these equations leads to the sum rule [1]

(mf +mf ′)(4mK −ma) − 3mfmf ′ = 8m2
K − 8mKma + 3m2

a. (14.11)

This relation is verified for the ground-state vector mesons. We identify the φ(1020) with the
f ′ and the ω(783) with the f . Thus

φ(1020) = ψ8 cos θV − ψ1 sin θV , (14.12)

August 1, 2007 13:54



4 14. Quark model

ω(782) = ψ8 sin θV + ψ1 cos θV , (14.13)

with the vector mixing angle θV = 35◦ from Eq. (14.9), very close to ideal mixing. Thus φ(1020)
is nearly pure ss̄. For ideal mixing Eq. (14.9) and Eq. (14.10) lead to the relations

mK =
mf +mf ′

2
, ma = mf , (14.14)

which are satisfied for the vector mesons. However, for the pseudoscalar (and scalar mesons)
Eq. (14.11) is satisfied only approximately. Then Eq. (14.9) and Eq. (14.10) lead to somewhat
different values for the mixing angle. Identifying the η with the f ′ one gets

η = ψ8 cos θP − ψ1 sin θP , (14.15)

η′ = ψ8 sin θP + ψ1 cos θP . (14.16)

Following chiral perturbation theory the meson masses in the mass formulae (Eq. (14.9) and
Eq. (14.10)) should be replaced by their squares. Table 14.2 lists the mixing angle θ lin from
Eq. (14.10) and the corresponding θquad obtained by replacing the meson masses by their squares
throughout.

The pseudoscalar mixing angle θP can also be measured by comparing the partial widths for
radiative J/ψ decay into a vector and a pseudoscalar [2], radiative φ(1020) decay into η and η ′

[3], or p̄p annihilation at rest into a pair of vector and pseudoscalar or into two pseudoscalars
[4,5]. One obtains a mixing angle between –10◦ and –20◦.

The nonet mixing angles can be measured in γγ collisions, e.g. for the 0−+, 0++ and 2++

nonets. In the quark model the amplitude for the coupling of neutral mesons to two photons is
proportional to

∑

iQ
2
i , where Qi is the charge of the i-th quark. The 2γ partial width of an

isoscalar meson with mass m is then given in terms of the mixing angle α by

Γ2γ = C(5 cosα−
√

2 sinα)2m3 , (14.17)

for f ′ and f (α → α – 90◦). The coupling C may depend on the meson mass. It is often assumed
to be a constant in the nonet. For the isovector a one then finds Γ2γ = 9 C m3. Thus the
members of an ideally mixed nonet couple to 2γ with partial widths in the ratios f : f ′ : a =
25 : 2 : 9. For tensor mesons one finds from the ratios of the measured 2γ partial widths for
the f2(1270) and f ′2(1525) mesons a mixing angle αT of (81± 1)◦, or θT = (27 ± 1)◦, in accord
with the linear mass formula. For the pseudoscalars one finds from the ratios of partial widths
Γ(η′ → 2γ)/Γ(η → 2γ) a mixing angle θP = (–18 ± 2)◦ while the ratio Γ(η′ → 2γ)/Γ(π0 → 2γ)
leads to ∼ –24 ◦. SU(3) breaking effects for pseudoscalars are discussed in Ref. 6.
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14. Quark model 5

Table 14.2: Suggested qq quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson
Summary Table. The wave functions f and f ′ are given in the text. The singlet-octet mixing angles from the quadratic and linear mass
formulae are also given for the well established nonets. The classification of the 0++ mesons is tentative and the mixing angle uncertain
due to large uncertainties in some of the masses. Also, the f0(1710) and f0(1370) are expected to mix with the f0(1500). The latter is
not in this table as it is hard to accommodate in the scalar nonet. The light scalars a0(980), f0(980) and f0(600) are often considered as
meson-meson resonances or four-quark states and are therefore not included in the table. See the “Note on Non-qq Mesons” at the end of
the Meson Listings.

n 2s+1`J JPC I = 1 I = 1

2
I = 0 I = 0 θquad θlin

ud, ud, 1√
2
(dd− uu) us, ds; ds, −us f ′ f [◦] [◦]

1 1S0 0−+ π K η η′(958) −11.5 −24.6

1 3S1 1−− ρ(770) K∗(892) φ(1020) ω(782) 38.7 36.0

1 1P1 1+− b1(1235) K1B
† h1(1380) h1(1170)

1 3P0 0++ a0(1450) K∗
0
(1430) f0(1710) f0(1370)

1 3P1 1++ a1(1260) K1A
† f1(1420) f1(1285)

1 3P2 2++ a2(1320) K∗
2
(1430) f ′

2
(1525) f2(1270) 29.6 28.0

1 1D2 2−+ π2(1670) K2(1770)
† η2(1870) η2(1645)

1 3D1 1−− ρ(1700) K∗(1680)‡ ω(1650)

1 3D2 2−− K2(1820)
‡

1 3D3 3−− ρ3(1690) K∗
3
(1780) φ3(1850) ω3(1670) 32.0 31.0

1 3F4 4++ a4(2040) K∗
4
(2045) f4(2050)

1 3G5 5−− ρ5(2350)

1 3H6 6++ a6(2450) f6(2510)

2 1S0 0−+ π(1300) K(1460) η(1475) η(1295)

2 3S1 1−− ρ(1450) K∗(1410)‡ φ(1680) ω(1420)

† The 1+± and 2−± isospin 1

2
states mix. In particular, the K1A and K1B are nearly equal (45◦) mixtures of the K1(1270) and K1(1400).

‡ The K∗(1410) could be replaced by the K∗(1680) as the 2 3S1 state.
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6 14. Quark model

Table 14.3: qq quark-model assignments for the observed heavy mesons. Mesons in bold face are included in the Meson Summary Table.

n 2s+1`J JPC I = 0 I = 0 I = 1

2
I = 0 I = 1

2
I = 0 I = 0

cc bb cu, cd; cu, cd cs; cs bu, bd; bu, bd bs; bs bc; bc

1 1S0 0−+ ηc(1S) ηb(1S) D D±
s B B0

s B±
c

1 3S1 1−− J/ψ(1S) Υ (1S) D∗ D∗±
s B∗ B∗

s

1 1P1 1+− hc(1P ) D1(2420) Ds1(2536)
±

1 3P0 0++ χc0(1P ) χb0(1P ) D∗
s0(2317)

±†

1 3P1 1++ χc1(1P ) χb1(1P ) Ds1(2460)
±†

1 3P2 2++ χc2(1P ) χb2(1P ) D∗
2
(2460) Ds2(2573)

±

1 3D1 1−− ψ(3770)

2 1S0 0−+ ηc(2S)

2 3S1 1−− ψ(2S) Υ (2S)

2 3P0,1,2 0++, 1++, 2++ χb0,1,2(2P )

† The masses of these states are considerably smaller than most theoretical predictions. They have also been considered as four-quark states

(See the “Note on Non-qq Mesons” at the end of the Meson Listings). The Ds1(2460)
± and Ds1(2536)

± are mixtures of the 1+± states.
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Table 14.4: SU(3) couplings γ2 for quarkonium decays as a function of nonet mixing angle
α, up to a common multiplicative factor C (φ ≡ 54.7◦ + θP ).

Isospin Decay channel γ2

0 ππ 3 cos2 α

KK (cosα−
√

2 sinα)2

ηη (cosα cos2 φ−
√

2 sinα sin2 φ)2

ηη′
1

2
sin2 2φ (cosα+

√
2 sinα)2

1 ηπ 2 cos2 φ

η′π 2 sin2 φ

KK 1

1

2
Kπ

3

2

Kη (sinφ− cosφ√
2

)2

Kη′ (cosφ+
sinφ√

2
)2

The partial width for the decay of a scalar or a tensor meson into a pair of pseudoscalar mesons
is model dependent. Following Ref. 7,

Γ = C × γ2 × |F (q)|2 × q . (14.18)

C is a nonet constant, q the momentum of the decay products, F (q) a form factor and γ2 the
SU(3) coupling. The model-dependent form factor may be written as

|F (q)|2 = q2` × exp(− q2

8β2
), (14.19)

where ` is the relative angular momentum between the decay products. The decay of a qq̄ meson
into a pair of mesons involves the creation of a qq̄ pair from the vacuum and SU(3) symmetry
assumes that the matrix elements for the creation of ss̄, uū and dd̄ pairs are equal. The couplings
γ2 are given in Table 14.4 and their dependence upon the mixing angle α is shown in Fig. 14.2
for isoscalar decays. The generalization to unequal ss̄, uū and dd̄ couplings is given in Ref. 7. An
excellent fit to the tensor meson decay widths is obtained assuming SU(3) symmetry, with β ' 0.5
GeV/c, θV ' 26 ◦ and θP ' -17 ◦ [7].
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Figure 14.2: SU(3) couplings as a function of mixing angle α for isoscalar decays, up to a
common multiplicative factor C and for θP = −17.3◦ (from Ref. 4).

14.3. Exotic mesons

The existence of a light nonet composed of four quarks with masses below 1 GeV was suggested
a long time ago [8]. Coupling two triplets of light quarks u, d and s one obtains nine states,
of which the six symmetric (uu, dd, ss, ud + du, us + su, ds + sd) form the six dimensional
representation 6, while the three antisymmetric (ud − du, us − su, ds − sd) form the three
dimensional representation 3 of SU(3):

3 ⊗ 3 = 6 ⊕ 3̄ . (14.20)

Combining with spin and color and requiring antisymmetry, one finds that the most deeply bound
diquark (and hence the lightest) is the one in the 3 and spin singlet state. The combination of the
diquark with an antidiquark in the 3 representation then gives a light nonet of four-quark scalar
states. Letting the number of strange quarks determine the mass splitting one obtains a mass
inverted spectrum with a light isosinglet (udūd̄), a medium heavy isodoublet (e.g. uds̄d̄) and a
heavy isotriplet (e.g. dsūs̄) + isosinglet (e.g. usūs̄). It is then tempting to identify the lightest
state with the f0(600), and the heaviest states with the a0(980), and f0(980). Then the meson
with strangeness κ(800) would lie in between.

QCD predicts the existence of isoscalar mesons which contain only gluons, the glueballs. The
ground state glueball is predicted by lattice gauge theories to be 0++, the first excited state 2++.
Errors on the mass predictions are large. As an example for the glueball mass spectrum we show
in Figure 14.3 a recent calculation from the lattice [9]( see also [10]) . This group predicts a mass
of 1710 MeV for the ground state, with an error of about 100 MeV. Earlier work by other groups
produced masses at 1650 MeV [11] and 1550 MeV [12]( see also Ref. 13). The first excited state
has a mass of about 2.4 GeV and the lightest glueball with exotic quantum numbers (2+−) has a
mass of about 4 GeV.
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Figure 14.3: Predicted glueball mass spectrum from the lattice (from Ref. 9). See full-color
version on color pages at end of book.

These lattice calculations assumed that the quark masses are infinite and neglect qq̄ loops.
However, one expects that glueballs will mix with nearby qq̄ states of the same quantum numbers
[7,14]. For example, the two isoscalar 0++ mesons will mix with the pure ground state glueball to
generate the observed physical states f0(1370), f0(1500), and f0(1710). Experimental evidence is
mounting that the f0(1500) has considerable affinity for glue and that the f0(1370) and f0(1710)
have large uū + dd̄ and ss̄ components, respectively. The f0(1710) has also been proposed as a
candidate scalar glueball [11]( see the “Note on Non-qq Mesons” at the end of the Meson Listings
and Ref. 15).

Mesons made of qq̄ pairs bound by excited gluons g, the hybrid states qq̄g, are also predicted.
They should lie in the 1.9 GeV mass region, according to gluon flux tube models [16]. Lattice
QCD also predicts the lightest hybrid, an exotic 1−+, at a mass of 1.9 GeV [17]. However, the
bag model predicts four nonets, among them an exotic 1−+ around or above 1.4 GeV [18,19].
There are so far two candidates for exotic states with quantum numbers 1−+, the π1(1400) and
π1(1600), which could be hybrids or four-quark states ( see the “Note on Non-qq Mesons” at the
end of the Meson Listings and Ref. 15).
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10 14. Quark model

14.4. Baryons: qqq states

Baryons are fermions with baryon number B = 1, i.e. in the most general case they are
composed of three quarks plus any number of quark - antiquark pairs. Although recently some
experimental evidence for (qqqqq̄) pentaquark states has been claimed (see review on Possible
exotic baryon resonance), so far all established baryons are 3-quark (qqq) configurations. The
color part of their state functions is an SU(3) singlet, a completely antisymmetric state of the
three colors. Since the quarks are fermions, the state function must be antisymmetric under
interchange of any two equal-mass quarks (up and down quarks in the limit of isospin symmetry).
Thus it can be written as

| qqq 〉A = | color 〉A × | space, spin, flavor 〉S , (14.21)

where the subscripts S and A indicate symmetry or antisymmetry under interchange of any two
equal-mass quarks. Note the contrast with the state function for the three nucleons in 3H or 3He:

|NNN 〉A = | space, spin, isospin 〉A . (14.22)

This difference has major implications for internal structure, magnetic moments, etc. (For a nice
discussion, see Ref. 20.)

The “ordinary” baryons are made up of u, d, and s quarks. The three flavors imply an
approximate flavor SU(3), which requires that baryons made of these quarks belong to the
multiplets on the right side of

3 ⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A (14.23)

(see Sec. 37, on “SU(n) Multiplets and Young Diagrams”). Here the subscripts indicate symmetric,
mixed-symmetry, or antisymmetric states under interchange of any two quarks. The 1 is a uds
state (Λ1) and the octet contains a similar state (Λ8). If these have the same spin and parity they
can mix. The mechanism is the same as for the mesons (see above). In the ground state multiplet,
the SU(3) flavor singlet Λ1 is forbidden by Fermi statistics. Section 36, on “SU(3) Isoscalar
Factors and Representation Matrices”, shows how relative decay rates in, say, 10 → 8 ⊗ 8 decays
may be calculated.

The addition of the c quark to the light quarks extends the flavor symmetry to SU(4). However,
due to the large mass of the c quark, this symmetry is much more strongly broken than the
SU(3) of the three light quarks. Figures 14.4(a) and 14.4(b) show the SU(4) baryon multiplets
that have as their bottom levels an SU(3) octet, such as the octet that includes the nucleon, or
an SU(3) decuplet, such as the decuplet that includes the ∆(1232). All particles in a given SU(4)
multiplet have the same spin and parity. The charmed baryons are discussed in more detail in
the “Note on Charmed Baryons” in the Particle Listings. The addition of a b quark extends the
flavor symmetry to SU(5), the existence of baryons with t-quarks is very unlikely due to the short
lifetime of the top.

For the “ordinary” baryons (no c or b quark), flavor and spin may be combined in an
approximate flavor-spin SU(6) in which the six basic states are d ↑, d ↓, · · ·, s ↓ (↑, ↓ = spin up,
down). Then the baryons belong to the multiplets on the right side of

6 ⊗ 6 ⊗ 6 = 56S ⊕ 70M ⊕ 70M ⊕ 20A . (14.24)

These SU(6) multiplets decompose into flavor SU(3) multiplets as follows:

56 = 410 ⊕ 28 (14.25a)

August 1, 2007 13:54



14. Quark model 11

Ω++
ccc

Ξ ++
ccΞ +

cc

Ω+
cc

Σ ++
c

Ξ +
cΞ 0

c

Ω −
Ξ 0

Σ +

∆+∆0∆−

Σ −

Ξ −

∆++

(b)

Ξ +
c

Σ ++
c

Ξ 0

n p
Ξ c

0

(a)

ddc
dsc

udc

usc
uuc

uud
uus

ussdss

udd
dds

ddd

dss
dds

uss
uus

uududd uds

ssc
uscdsc

uuc

uccscc
dcc

Ω+
cc

Ξ ++
ccΞ +

cc

Σ 0
c

uuu
Σ 0

Ξ −

Σ −
Σ +Λ,Σ 0

udc

Σ +
cΛ+

c,

cΣ +

Ω 0
c

Σ 0
c

dcc ucc

ddc

uds

ssc

scc

sss

Ω 0
c

Figure 14.4: SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet
with an SU(3) octet. (b) The 20-plet with an SU(3) decuplet.

70 = 210⊕ 48⊕ 28 ⊕ 21 (14.25b)

20 = 28⊕ 41 , (14.25c)

where the superscript (2S + 1) gives the net spin S of the quarks for each particle in the SU(3)
multiplet. The JP = 1/2+ octet containing the nucleon and the JP = 3/2+ decuplet containing
the ∆(1232) together make up the “ground-state” 56-plet in which the orbital angular momenta
between the quark pairs are zero (so that the spatial part of the state function is trivially
symmetric). The 70 and 20 require some excitation of the spatial part of the state function in
order to make the overall state function symmetric. States with nonzero orbital angular momenta
are classified in SU(6)⊗O(3) supermultiplets.

It is useful to classify the baryons into bands that have the same number N of quanta of
excitation. Each band consists of a number of supermultiplets, specified by (D,LP

N ), where
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D is the dimensionality of the SU(6) representation, L is the total quark orbital angular
momentum, and P is the total parity. Supermultiplets contained in bands up to N = 12 are
given in Ref. 22. The N = 0 band, which contains the nucleon and ∆(1232), consists only of
the (56,0+

0 ) supermultiplet. The N = 1 band consists only of the (70,1−1 ) multiplet and contains
the negative-parity baryons with masses below about 1.9 GeV. The N = 2 band contains five
supermultiplets: (56,0+

2 ), (70,0+
2 ), (56,2+

2 ), (70,2+
2 ), and (20,1+

2 ).

Table 14.5: N and ∆ states in the N=0,1,2 harmonic oscillator bands. Lπ denotes angular
momentum and parity, S the three-quark spin and ’sym’=A,S,M the symmetry of the spatial
wave function.

N sym Lπ S N(I = 1/2) ∆(I = 3/2)

2 A 1+ 1/2 1/2+ 3/2+

2 M 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

2 M 2+ 1/2 3/2+ 5/2+ 3/2+ 5/2+

2 M 0+ 3/2 3/2+

2 M 0+ 1/2 1/2+ 1/2+

2 S 2+ 3/2 1/2+ 3/2+ 5/2+ 7/2+

2 S 2+ 1/2 3/2+ 5/2+

2 S 0+ 3/2 3/2+

2 S 0+ 1/2 1/2+

1 M 1− 3/2 1/2− 3/2− 5/2−

1 M 1− 1/2 1/2− 3/2− 1/2− 3/2−

0 S 0+ 3/2 3/2+

0 S 0+ 1/2 1/2+

The wave functions of the non-strange baryons in the harmonic oscillator basis are often labeled
by |X2S+1LπJ

P 〉, where S,L, J, P are as above, X = N or ∆, and π = S,M or A denotes the
symmetry of the spatial wave function. The possible states for the bands with N=0,1,2 are given
in Table 14.5.

In Table 14.6, quark-model assignments are given for many of the established baryons whose
SU(6)⊗O(3) compositions are relatively unmixed. One must, however, keep in mind that apart
from the mixing of the Λ singlet and octet states also states with same J π but different L, S
combinations can mix. In the quark model with one-gluon exchange motivated interactions the
size of the mixing is determined by the relative strength of the tensor term with respect to the
contact term (see below). The mixing is more important for the decay patterns of the states than
for their positions. An example are the lowest lying (70, 1−1 ) states with Jπ=1/2− and 3/2−. The
physical states are:

|S11(1535)〉 = cos(ΘS)|N2PM1/2−〉 − sin(ΘS)|N4PM1/2−〉 (14.26)

|D13(1520)〉 = cos(ΘD)|N2PM3/2−〉 − sin(Θ)D|N4PM3/2−〉 (14.27)

and the orthogonal combinations for S11(1650) and D13(1700). The mixing is large for the
Jπ=1/2− states (ΘS ≈ -32o) but small for the Jπ=3/2− states (ΘD ≈ +6o) [23], [26].
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Table 14.6: Quark-model assignments for some of the known baryons in terms of a
flavor-spin SU(6) basis. Only the dominant representation is listed. Assignments for several
states, especially for the Λ(1810), Λ(2350), Ξ(1820), and Ξ(2030), are merely educated
guesses. For assignments of the charmed baryons, see the “Note on Charmed Baryons” in
the Particle Listings.

JP (D,LP
N ) S Octet members Singlets

1/2+ (56,0+
0 ) 1/2 N(939) Λ(1116) Σ(1193) Ξ(1318)

1/2+ (56,0+
2 ) 1/2 N(1440) Λ(1600) Σ(1660) Ξ(?)

1/2− (70,1−1 ) 1/2 N(1535) Λ(1670) Σ(1620) Ξ(?) Λ(1405)

3/2− (70,1−1 ) 1/2 N(1520) Λ(1690) Σ(1670) Ξ(1820) Λ(1520)

1/2− (70,1−1 ) 3/2 N(1650) Λ(1800) Σ(1750) Ξ(?)

3/2− (70,1−1 ) 3/2 N(1700) Λ(?) Σ(?) Ξ(?)

5/2− (70,1−1 ) 3/2 N(1675) Λ(1830) Σ(1775) Ξ(?)

1/2+ (70,0+
2 ) 1/2 N(1710) Λ(1810) Σ(1880) Ξ(?) Λ(?)

3/2+ (56,2+
2 ) 1/2 N(1720) Λ(1890) Σ(?) Ξ(?)

5/2+ (56,2+
2 ) 1/2 N(1680) Λ(1820) Σ(1915) Ξ(2030)

7/2− (70,3−3 ) 1/2 N(2190) Λ(?) Σ(?) Ξ(?) Λ(2100)

9/2− (70,3−3 ) 3/2 N(2250) Λ(?) Σ(?) Ξ(?)

9/2+ (56,4+
4 ) 1/2 N(2220) Λ(2350) Σ(?) Ξ(?)

Decuplet members

3/2+ (56,0+
0 ) 3/2 ∆(1232) Σ(1385) Ξ(1530) Ω(1672)

3/2+ (56,0+
2 ) 3/2 ∆(1600) Σ(?) Ξ(?) Ω(?)

1/2− (70,1−1 ) 1/2 ∆(1620) Σ(?) Ξ(?) Ω(?)

3/2− (70,1−1 ) 1/2 ∆(1700) Σ(?) Ξ(?) Ω(?)

5/2+ (56,2+
2 ) 3/2 ∆(1905) Σ(?) Ξ(?) Ω(?)

7/2+ (56,2+
2 ) 3/2 ∆(1950) Σ(2030) Ξ(?) Ω(?)

11/2+ (56,4+
4 ) 3/2 ∆(2420) Σ(?) Ξ(?) Ω(?)

All baryons of the ground state multiplets are known. Many of their properties (masses,
magnetic moments etc.) are in good agreement with the most basic versions of the quark model,
including harmonic (or linear) confinement and a spin-spin interaction, which is responsible for
the octet - decuplet mass shifts.

The situation for the excited states is much less clear. There are two main problems which are
illustrated in Fig. 14.5, where the experimentally observed excitation spectrum of the nucleon (N
and ∆ resonances) is compared to the results of a typical quark model calculation [24]. Many
more states are predicted than observed but on the other hand states with certain quantum
numbers appear in the spectrum at excitation energies much lower than predicted. Up to an
excitation energy of 2.4 GeV about 45 N states are predicted, but only 12 are established (four
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Figure 14.5: Excitation spectrum of the nucleon. Compared are the positions of the
excited states identified in experiment, to those predicted by a modern quark model
calculation. Left hand side: isospin I = 1/2 N -states, right hand side: isospin I = 3/2
∆-states. Experimental: (colums labeled ’exp’), three and four star states are indicated by
full lines (two-star dashed lines, one-star dotted lines). At the very left and right of the figure
the spectroscopic notation of these states is given. Quark model [24]: (columns labeled
’QM’), all states for the N=1,2 bands, low lying states for the N=3,4,5 bands. Full lines: at
least tentative assignment to observed states, dashed lines: so far no observed counterparts.
Many of the assignments between predicted and observed states are highly tentative.

or three star; see Note on N and ∆ resonances for the rating of the status of resonances) and 7
are tentative (two or one star). Even for the N=1,2 bands up to now only half of the predicted
states have been observed. This has been known for a long time as the ‘missing resonance’
problem [23]. On the other hand, the lowest states from the N=2 band, the P11(1440) and
the P33(1600), appear lower than the negative parity states from the N=1 band and much lower
than predicted by most models. Also negative parity ∆ states from the N=3 band (S31(1900),
D33(1940), D35(1930)) are too low in energy. Part of the problem could be experimental. Among
the negative parity ∆ states only the D35 has three stars and the uncertainty in the position of the
P33(1600) is large (1550 - 1700 MeV). For the missing resonance problem selection rules could play
a role [23]. The states are broad and overlapping and most studies of baryon resonances have
been done with pion induced reactions, so that there is bias in the data base against resonances,
which couple only weakly to the Nπ channel. Quark model predictions for the couplings to other
hadronic channels and to photons are given in Ref. 24. A large experimental effort is ongoing at
several electron accelerators to study the baryon resonance spectrum with real and virtual photon
induced meson production reactions. This includes the search for as yet unobserved states as
well as detailed studies of the properties of the low lying states (decay patterns, electromagnetic
couplings, magnetic moments etc.) (see Ref. 25 for recent reviews).
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In quark models the number of excited states is determined by the effective degrees of freedom
while their ordering and decay properties are related to the residual quark - quark interaction. A
recent overview of quark models for baryons is given in Ref. 26. The effective degrees of freedom
in the standard nonrelativistic quark model are three equivalent valence quarks with one-gluon
exchange motivated, flavor independent color magnetic interactions. A different class of models
uses interactions which give rise to a quark - diquark clustering of the baryons (for a review see
Ref. 27). If there is a tightly bound diquark, only two degrees of freedom are available at low
energies and thus fewer states are predicted. Furthermore, selection rules in the decay pattern may
arise from the quantum numbers of the diquark. More states are predicted by collective models of
the baryon like the algebraic approach in Ref. 28. In this approach, the quantum numbers of the
valence quarks are distributed over a Y-shaped string-like configuration and additional states arise
e.g. from vibrations of the strings. More states are also predicted in the framework of flux-tube
models (see [29]) , which are motivated by lattice QCD. In addition to the quark degrees of
freedom, flux-tubes responsible for the confinement of the quarks are considered as degrees of
freedom. These models include hybrid baryons containing explicit excitations of the gluon fields.
However, since all half integral Jπ quantum numbers are possible for ordinary baryons, such
‘exotics’ will be very hard to identify and probably always mix with ordinary states. So far, the
experimentally observed number of states is still far lower even than predicted by the quark -
diquark models.

14.5. Dynamics

Many specific quark models exist, but most contain a similar basic set of dynamical ingredients.
These include:

i) A confining interaction, which is generally spin-independent (e.g. harmonic oscillator or linear
confinement).

ii) Different types of spin-dependent interactions e.g.:

a) color magnetic flavor independent interaction modeled after the effects of gluon exchange
in QCD (see e.g. Ref. 31). For example, in the S-wave states, there is a spin-spin hyperfine
interaction of the form

HHF = −αSM
∑

i>j

(−→σ λa)i(
−→σ λa)j , (14.28)

where M is a constant with units of energy, λa (a = 1, · · · , 8, ) is the set of SU(3) unitary
spin matrices, defined in Sec. 36, on “SU(3) Isoscalar Factors and Representation Matrices,”
and the sum runs over constituent quarks or antiquarks. Spin-orbit interactions, although
allowed, seem to be small in general, but a tensor term is responsible for the mixing of states
with the same Jπ but different L, S combinations.

b) flavor dependent short range quark forces from instanton effects (see e.g. Ref. 32). This
interaction acts only on scalar, isoscalar pairs of quarks in a relative s-wave state:

〈q2;S,L, T |W |q2;S,L, T 〉 = −4gδS,0δL,0δI,0W (14.29)

where W is the radial matrix element of the contact interaction.

c) flavor dependent spin-spin forces arising from one-boson exchange. The interaction term is
of the form:

HHF ∝
∑

i<j

V (−→r ij)λ
F
i · λF

j
−→σ i · −→σ j (14.30)
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where the λF
i are in flavor space (see e.g. Ref. 33).

iii) A strange quark mass somewhat larger than the up and down quark masses, in order to split
the SU(3) multiplets.

iv) In the case of isoscalar mesons, an interaction for mixing qq configurations of different flavors
(e.g., uu↔ dd↔ ss), in a manner which is generally chosen to be flavor independent.

These four ingredients provide the basic mechanisms that determine the hadron spectrum in the
standard quark model. However, a radically different view of the meson and baryon excitation
spectrum is being derived in the framework of chiral coupled channel dynamics [30]. Here, the
conjecture is that in the u, d, s sector only the ground state baryon-octet 1/2+, baryon-decuplet
3/2+ and the Goldstone boson 0− and vector meson 1− states are genuine qqq or qq̄ states. It is
then attempted to generate all excited states by coupled channel dynamics.

14.6. Lattice Calculations of Hadronic Spectroscopy

Lattice calculations predict the spectrum of bound states in QCD from first principles,
beginning with the Lagrangian of full QCD or of various approximations to it. This is typically
done using the Euclidean path integral formulation of quantum field theory, where the analog of a
partition function for a field theory containing some generic fields φ(x), with action S(φ), is

Z =

∫

[dφ] exp(−S(φ)). (14.31)

The expectation value of any observable O is

〈O〉 =
1

Z

∫

[dφ]O(φ) exp(−S(φ)). (14.32)

The theory is regulated by introducing a space-time lattice, with lattice spacing a. This converts
the functional integral Eq. (14.31) into an ordinary integral (of very large dimensionality). The
integral is replaced by a Monte Carlo sampling over an ensemble of configurations of field variables,
using an algorithm which insures that a field configuration is present in the ensemble with a
probability proportional to exp(−S(φj)). Then ensemble averages become sample averages,

〈O〉 =
1

N

N
∑

j=1

O(φj). (14.33)

This is all quite similar to the kind of Monte Carlo simulation done by experiments, except that
the ensembles of field configurations are created sequentially, as a so-called “Markov chain.”

In QCD, the field variables correspond to gauge fields and quark fields. In a lattice calculation,
the lattice spacing (which serves as an ultraviolet cutoff) and the (current) quark masses are
inputs; hadron masses and other observables are predicted as a function of those masses. The
lattice spacing is unphysical, and it is necessary to extrapolate to the limit of zero lattice spacing.
Lattice predictions are for dimensionless ratios of dimensionful parameters (like mass ratios)
and predictions of dimensionful quantities require using one experimental input to set the scale.
Interpolation or extrapolation of lattice results in the light quark masses involves formulas of
chiral perturbation theory.

For conventional hadronic states, lattice calculations use the quark model to construct operators
which are taken as interpolating fields. This does not mean that the hadronic states have minimal
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quark content: the operators create multi-quark states with particular quantum numbers, but
they are connected by quark propagators which include all effects of relativity and could include
the effects of virtual quark-antiquark pairs in the vacuum.

Constituent gluons do not appear naturally in lattice calculations; instead, gauge fields
appear as link variables, which allow color to be parallel transported across the lattice in a
gauge covariant way. Calculations of glueballs on the lattice use interpolating fields of the form
Oj ∼ exp i

∮

~A · ~dl integrated about some path. The fields look like closed tubes of chromoelectric
and chromomagnetic flux. Calculations of exotics are done with interpolating fields involving
quark and antiquark creation operators joined by flux tubes.

Calculations with heavy quarks typically use Non-Relativistic QCD (NRQCD) or Heavy Quark
Effective Theory (HQET), systematic expansions of the QCD Lagrangian in powers of the heavy
quark velocity or the inverse heavy quark mass. Terms in the Lagrangian have obvious quark
model analogs but are derived directly from QCD. The heavy quark potential is a derived quantity,
measured in simulations.

Lattice calculations are as specialized as the experiments which produce the data in this book
and it is not easy to give a blanket answer to the question “how well can lattice calculations
predict” any specific quantity. However, let us try:

The cleanest lattice predictions come from measurements of processes in which there is only
one particle in the simulation volume. These quantities include masses of hadrons, simple decay
constants, like pseudoscalar meson decay constants, and semileptonic form factors (such as the
ones appropriate to B → Dlν, Klν, πlν). The cleanest predictions for masses are for states which
have narrow decay widths and are far below any thresholds to open channels, since the effects
of final state interactions are not yet under complete control on the lattice. “Difficult” states for
the quark model (such as exotics) are also difficult for the lattice because of the lack of simple
operators which couple well to them. Technical issues presently prevent lattice practitioners from
directly computing matrix elements for weak decays with more than one strongly interacting
particle in the final state.

Good-quality modern lattice calculations will present multi-part error budgets with their
predictions. Users are advised to read them carefully! A small part of the uncertainty is
statistical, from sample size. Typically, the quoted statistical uncertainty includes uncertainty
from a fit: it is rare that a simulation measures one global quantity which is the desired observable.
Simulations with light dynamical quarks are typically done at mass values heavier than the
experimental ones, and it is necessary to extrapolate in the quark mass. They are always done
at nonzero lattice spacing, and so it will be necessary to extrapolate to zero lattice spacing.
Some theoretical input is needed to do this. Much of the uncertainty in these extrapolations is
systematic, from the choice of fitting function. Other systematics include the number of dynamical
flavors of quarks actually simulated, and technical issues with how these dynamical quarks
are included. The particular choice of a fiducial mass (to normalize other predictions) is not
standardized; there are many possible choices, each with its own set of strengths and weaknesses,
and determining it usually requires a second lattice simulation from that used to calculate the
quantity under consideration.

Of course, there is much more to lattice calculations besides spectroscopy; please refer to
the mini-review on Quark Masses in the Quarks section of the Listings for more lattice-based
phenomenology.

We conclude with a few “representative” pictures of spectroscopy from recent state-of-the-art
simulations. They illustrate (better than any discussion) the size of lattice uncertainties.

A systematic of major historical interest is the “quenched approximation,” in which virtual
quark-antiquark pairs are simply left out of the simulation. This was done because the addition of
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Figure 14.6: Comparison of quenched results with experiment, from Ref. [34] as presented
by Ref. [35].

these virtual pairs presented an expensive computational problem. Recent advances in algorithms
and computer hardware have rendered it obsolete. A recent quenched simulation [34] of the light
hadron spectrum is shown in Fig. 14.6. Note the qualitative quark model features of the lattice
result: the equal spacing of the decuplet and the vector meson multiplet. The lattice error bars
are small enough to reveal systematic errors in the quenched approximation: note especially, that
the kaon and φ masses cannot be simultaneously correctly determined, and the nucleon/rho meson
mass ratio is too low. No generally-accepted methodology has ever allowed one to correct for
quenching effects, short of redoing all calculations with dynamical quarks.

Figure 14.7: Comparison of quenched results with results from simulations with 2+1 flavors
of staggered fermions, from Ref. [36].

Fig. 14.7, from Ref. [36], shows a comparison of quenched spectroscopy with results from a
simulation with a strange quark at roughly its physical value and two flavors of light dynamical
quarks with masses at roughly one fifth of the strange quark’s mass. The authors focus on
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quantities for which lattice predictions should work well, as we described above. The left panel
shows these authors’ compilation of quenched results; the right panel, results with dynamical
fermions, after a chiral extrapolation.
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Figure 14.8: The Υ spectrum of radial and orbital levels from Ref. [37]. Closed and
open symbols are from coarse and fine lattices respectively. Squares and triangles denote
unquenched and quenched results respectively. Lines represent experiment. See full-color
version on color pages at end of book.

Fig. 14.8 shows Upsilon (bb̄) spectroscopy from Ref. [37]. The calculation uses a discretization
of nonrelativistic QCD for its heavy quarks, and includes three flavors of light dynamical staggered
fermions. Quenched data are also shown for comparison.
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